

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Ergonomics-oriented Design

Course

Field of study Year/Semester

Engeneering Management 2/4

Area of study (specialization) Profile of study

general academic

Level of study Course offered in

First-cycle studies Polish

Form of study Requirements

part-time elective

Number of hours

Lecture Laboratory classes Other (e.g. online)

10

Tutorials Projects/seminars

10

Number of credit points

2

Lecturers

Responsible for the course/lecturer:

Responsible for the course/lecturer:

Ph.D., D.Sc., Eng. Marcin Butlewski, University

Professor

Mail to: marcin.butlewski@put.poznan.pl

Phone: 61 665 33 77

Faculty of Engineering Management

ul. J. Rychlewskiego 2, 60-965 Poznań

Prerequisites

The student has basic knowledge in the field of ergonomics and management

Course objective

The aim of the lectures is to familiarize students with the basic issues of the methodology of humanoriented design as an operator and as a service worker of machines and other technical devices. The purpose of the exercises is to convey the skills of designing human - technical object systems during practical design work on specific, detailed design tasks, defined from an anthropocentric point of view.

Course-related learning outcomes

Knowledge

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

The student describes the paradigm of ergonomic design, including the human-technical object system and the ergonomic design process [P6S_WG_13].

The student lists and explains decision criteria used in the ergonomic design process, in the context of the industrial product life cycle [P6S_WG_15].

The student identifies methods, techniques, tools, and materials used in ergonomic design, considering the technology of construction and operation of machines [P6S_WG_16].

The student characterizes non-technical conditions of engineering activities, including principles of safety and occupational hygiene [P6S_WG_18].]

Skills

The student applies analytical, simulation, and experimental methods to formulate and solve design tasks in the field of ergonomics [P6S_UW_10].

The student analyzes engineering tasks in terms of systemic, socio-technical, organizational, and economic aspects [P6S UW 11].

The student conducts a preliminary economic analysis of the designed ergonomic solutions [P6S_UW_12].

The student identifies and solves design tasks related to ergonomics, designing workspace and information-control processes [P6S UW 14].

The student applies methods for solving problems in ergonomic design, including in the context of designing for people with disabilities [P6S_UW_15].

Social competences

The student is aware of the importance of a systemic approach in ergonomic design, considering the diverse requirements of users and the socio-economic context [P6S_KO_02].

The student explains and considers non-technical aspects of engineering activities, including the impact of ergonomic design on the environment and society [P6S_KR_01].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Forming assessment: lectures: in writing (test), at least 55% of correct answers required.

Exercises: Credit for the grade on the basis of: active participation in classes and the implementation of individual tasks

Summative rating issued from the whole

Programme content

The origin of design science and definitions. Designing system and design system. Engineering design: goals, tasks, process structure. The ergonomic design paradigm. The human-technical system as an

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

object of design, decision criteria, structure of the ergonomic design process. Designing: work process, work space, information and control processes, sources of work environment factors - practical examples. Economic and social advantages of ergonomic design. Computer and heuristic design support. Design for disabled people.

Teaching methods

Teaching methods: Conversational lecture

Exercises: Classical problem method, Didactic games,

Bibliography

Basic

Projektowanie ergonomiczne (Ergonomic design); Edwin Tytyk, Wyd. Naukowe PWN, Warszawa-Poznań, 2001

Ergonomia produktu. Ergonomiczne zasady projektowania produktów (Product ergonomics. Ergonomic design principles of the product; Jan Jabłoński (red.), Wydawnictwo Politechniki Poznańskiej, Poznań, 2006

Butlewski M., Projektowanie i ocena wyrobów. - Poznań: Wydaw. Politechniki Poznańskiej , 2013. - 106 s. 121 podręcznik

Atlas miar człowieka. Dane do projektowania i oceny ergonomicznej (Atlas of human measure. The data for the design and evaluation of ergonomic evaluation); Adam Gedliczka, Wyd. CIOP, Warszawa, 2001

Butlewski M., Projektowanie ergonomiczne wobec dynamiki deficytu zasobów ludzkich / Marcin Butlewski (WIZ) / red. Krystyna Bubacz - Poznań, Polska : Wydawnictwo Politechniki Poznańskiej, 2018 - 255 s.

Additional

Makroergonomia (Macroergonomics); Leszek Pacholski, Aleksandra Jasiak, Wydawnictwo Politechniki Poznańskiej, Poznań, 2011

Zabłocki, M., Butlewski, M., Sydor, M. (2017). Ergonomiczne rozwiązania techniczne dla osób z niepełnosprawnościami stosowane w transporcie zbiorowym. Bezpieczeństwo Pracy ? Nauka i Praktyka, 553(10), 15?19.

Sydor, M., Zabłocki, M., Butlewski, M. (2017). Ergonomiczne wymagania stawiane pojazdom samochodowym dla osób z niepełnosprawnościami. Bezpieczeństwo Pracy ? Nauka i Praktyka, 553(10), 10?14.

Butlewski M., Misztal A., Belu N., An analysis of the benefits of Ethnography Design methods for product modeling, IOP Conf. Series: Materials Science and Engineering 145 (2016) 042023, IOP Publishing.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Butlewski M., Indirect Estimation Method of Data for Ergonomic Design on the Base of Disability Research in Polish 2011 Census, p. 454-462, [in]: Advances in Social and Organizational Factors, Edited by Peter Vink, CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2012, ISBN 978-1-4398-8

Butlewski M., Heuristic Methods Aiding Ergonomic Design, Universal Access in Human-Computer Interaction. Design Methods, Tools, and Interaction Techniques for eluclusion, Lecture Notes in Computer Science Volume 8009, 2013, pp 13-20

Kalemba A., & Butlewski, M. (2016). "Ergonomic design of store shelving for the elderly applying universal design with a focus on health and safety". Occupational Safety and Hygiene IV,.

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	20	1,0
Student's own work (literature studies, preparation for	30	1,0
classes/tutorials, preparation for tests, project preparation) ¹		

1

¹ delete or add other activities as appropriate